

Levels of Categorization

Superordinate

Animal

Basic

Bird

Subordinate

Robin

YES

NO

Expertise Effects on the N170

N170 Correlates with Degree of Expertise

Gauthier, Curran, Curby & Collins (2003)

Can laboratory training help us understand the dynamics of the learning processes contributing to perceptual expertise?

Training Bird "Experts"

Owls Wading Birds (Family 1) (Family 2) AND **Great Egret** American Bittern **Black Crowned Barn** Elf **Burrowing Boreal Night Heron Cattle Egret Glossy Ibis Green Heron Eagle** Screech Hawk **Flammulated Great Blue Heron Least Bittern Reddish Egret** Limpkin **Great Grey Barred**

Training Methods Species A **Basic Level Training Subordinate Level Training** Family 1 Species B Pre-test Post-test Family 1 **Training** Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8

6 days of training over 2 weeks

Subordinate Matching Task

(Pre- and Post- Training)

Are birds from same species? (not exemplar identity matching)

Car Training Experiment

Sport-Utility Vehicles (SUVs)

Antiques

Sedans

10

(Scott, Tanaka, Sheinberg, & Curran, 2008)

6 days of training over 2 weeks

Training Effects

- Similar results for Birds and Cars
- Pre-training Basic
- --- Pre-training Subordinate
- Post-training Basic
- Post-training Subordinate

- Accuracy (d')
 - Only enhanced by subordinate training.
- N170
 - Enhanced equally by subordinate, basic, and exposure training.
- N250
 - Only enhanced by subordinate training.

Training Effects

- Similar results for Birds and Cars
- Pre-training Basic
- --- Pre-training Subordinate
- Post-training Basic
- Post-training Subordinate

- Accuracy (d')
 - Only enhanced by <u>subordinate</u> training.
- N170
 - Enhanced equally by subordinate, basic, and exposure training.
- N250
 - Only enhanced by <u>subordinate</u> training

New Questions

 Can similar training effects be observed with novel stimulus categories?

 Does perceptual expertise training benefit from spaced learning?

Creature Families

3 Families 16 species/family 16 exemplars/species

4 days of training with spacing manipulated

Long Spacing: 2 days between training sessions

Short Spacing: 0 days between training sessions

ERPs during creature species matching task

Learning Benefits from Spacing

The Relationship Between RI and Optimal ISI

Cepeda et al. metaanalysis

Exposure and Basic-Level training only improved performance after Long Spacing.

Post-Pre ERP differences are increased by Spacing

Post-Pre ERP differences are increased by Spacing

Spacing Enhances Learning-related increases in N170 amplitude

N250 only increased after Subordinate Training, but more so for after Long Spacing.

Conclusions

- Perceptual expertise training protocols previously used with birds and cars are also effective for learning novel creatures.
- Spacing enhances learning as well as the ERP correlates of perceptual expertise.

Thanks!

Current Graduate Students:

Katharine Tepe

Chris D'Lauro

Erika Nyhus

Matt Mollison

Visiting Graduate Students:

Vicky Lai

Maria Kharitonova

Brendan Depue

Greg McHaffie

Wolfgang Pauli

Professional Research Assistants:

Brent Young

Chris Bird

Undergrad Research Assistants:

Colin Argys

Liz Eustis

Alex Eichenbaum

Megan Freeman

Emily Kleinfelder

Temporal Dynamics of Learning Center

An NSF Science of Learning Center James S. McDonnell Foundation

Training Sessions

Sub D-Prime: Old-Old>Old-New>New-New

ERP: Post is most negative, week most positive

Training Regimen

- Subjects have 4 training sessions.
- Each training session consists of 3 tasks:
 - 1. Naming (Need 100% to move on)
 - Creatures added pairwise.
 - 2. Speeded Naming
 - 3. "Game show" Task
- Creature families are learned at different category levels

Scott et al(2008) - learning by level

Scott et al(2006) - learning by level

Stimulus Training Details

Example: Arns (16 Species)

Shown in **Training**

A,B,C,D,E,F,G,H I,J,K,L,M,N,O,P

Not Shown In Training

Not Shown

Shown

Not Shown

Old Species Old Exemplars **Old Species New Exemplars** **New Species New Exemplars**

Long D-Prime

Short D-Prime

Short Lag D-Primes

Long Lag D-Primes

Post-Training D-Prime Diffs

10 Day Post-Training Diffs

Subordinate Training D-Prime Diffs

Stimulus Training Details

During Training:

- Species Seen
 - 8 Species of each family will be shown
 - 8 Species of each family will NOT be shown and will be held back for testing
- Exemplars seen:
 - 8 Exemplars from each species will be shown
 - 8 Exemplars from each species will NOT be shown and will be held back for testing